1. S. Miyaji, T. Ito, T. Kitaiwa, K. Nishizono, S. Agake, H. Harata, H. Aoyama, M. Umahashi, M. Sato, J. Inaba, S. Fushinobu, T. Yokoyama, A. Maruyama-Nakashita, M.Y. Hirai, N. Ohkama-Ohtsu*
    N2-Acetylornithine deacetylase functions as a Cys-Gly dipeptidase in the cytosolic glutathione degradation pathway in Arabidopsis thaliana.
    Plant J. in press doi: 10.1111/tpj.16700
  2. K. Soudthedlath, T. Nakamura, T. Ushiwatari, J. Fukazawa, K. Osakabe, Y. Osakabe, A. Maruyama-Nakashita*
    SULTR2;1 adjusts the bolting timing by transporting sulfate from rosette leaves to the primary stem.
    Plant Cell Physiol. in press doi: 10.1093/pcp/pcae020
  3. L. Zhang, R. Kawaguchi, T. Enomoto, S. Nishida, M. Burow, A. Maruyama-Nakashita*
    Glucosinolate catabolism maintains glucosinolate profiles and transport in sulfur-starved Arabidopsis.
    Plant Cell Physiol. 64: 1524-1550 (2023) doi: 10.1093/pcp/pcad075
  4. Y. Iwamoto, S. Saito, T. Teramoto, A. Maruyama-Nakashita, Y. Kakuta*
    Crystal structure of Arabidopsis thaliana sulfotransferase SOT16 involved in glucosinolate biosynthesis.
    Biochem. Biophys. Res. Commun. 677: 149-154 (2023) doi: 10.1016/j.bbrc.2023.08.020
  5. M. Yasuda, M. Fujita, K. Soudthedlath, M. Kusajima, H. Takahashi, T. Tanaka, F. Narita, T. Asami, A. Maruyama-Nakashita, H. Nakashita*
    Characterization of disease resistance induced by a pyrazolecarboxylic acid derivative in Arabidopsis thaliana.
    Int. J. Mol. Sci. 24: 9037 (2023)
  6. J. Piotrowska, Y. Jodoi, N.H. Trang, A. Wawrzynska, H. Takahashi, A. Sirko, A. Maruyama-Nakashita*
    The C-terminal region of SLIM1 transcription factor is required for sulfur deficiency response.
    Plants 11: 2595 (2022) doi: org/10.3390/plants11192595
  7. T. Ito, T. Kitaiwa, K. Nishizono, M. Umahashi, S. Miyaji, S. Agake, K. Kuwahara, T. Yokoyama, S. Fushinobu, A. Maruyama-Nakashita, R. Sugiyama, M. Sato, J. Inaba, M.Y. Hirai, N. Ohkama-Ohtsu*
    Glutathione degradation activity of γ-Glutamyl Peptidase 1 manifests its dual roles in primary and secondary sulfur metabolism in Arabidopsis.
    Plant J. 111: 1626–1642 (2022) doi: org/10.1111/tpj.15912
  8. M. Kusajima, M. Fujita, K. Soudthedlath, H. Nakamura, K. Yoneyama, T. Nomura, K. Akiyama, A. Maruyama-Nakashita, T. Asami, H. Nakashita*
    Strigolactones modulate salicylic acid-mediated disease resistance in Arabidopsis thaliana.
    Int. J. Mol. Sci. 23: 5246 (2022)
  9. H. Li, A. Suyama, N. Mitani-Ueno, R. Hell, A. Maruyama-Nakashita*
    Low-level NaCl stimulates plant growth by improving carbon and sulfur assimilation in Arabidopsis thaliana.
    Plants 10: 2134 (2021)
  10. A. Maruyama-Nakashita*, Y. Ishibashi, K. Yamamoto, L. Zhang, T. Morikawa-Ichinose, S.-J. Kim, N. Hayashi
    Oxygen plasma modulates glucosinolate levels without affecting lipid contents and composition in Brassica napus seeds.
    Biosci. Biotech. Biochem. 85: 2434-2441 (2021)
  11. M. Zhang, Y. Tashiro*, Y. Asakura, N. Ishida, K. Watanabe, S. Yue, A. Maruyama-Nakashita, K. Sakai
    Lab-scale autothermal thermophilic aerobic digestion can maintain and remove nitrogen by controlling shear stress and oxygen supply system
    J. Biosci. Bioeng. 132: 293-301 (2021)
  12. A. Allahham, S. Kanno, L. Zhang, A. Maruyama-Nakashita*
    Sulfur deficiency increases phosphate accumulation, uptake, and transport in Arabidopsis thaliana.
    Int. J. Mol. Sci. 21: 2971 (2020)
  13. M. Kusajima, M. Fujita, T. Mori, K. Tsukamoto, T. Ushiwatari, H. Hayashi, A. Maruyama-Nakashita, H. Yamakawa, H. Nakashita*
    Characterization of plant immunity-activating mechanism by a pyrazole derivative.
    Biosci. Biotech. Biochem. 84: 1427-1435 (2020)
  14. T. Morikawa-Ichinose, D. Miura, L. Zhang, S.-J. Kim, A. Maruyama-Nakashita*
    Involvement of BGLU30 in glucosinolate catabolism in the Arabidopsis leaf under dark conditions.
    Plant Cell Physiol. 61:1095-1106 (2020)
  15. C. Yamaguchi, S. Khamsalath, Y. Takimoto, A. Suyama, Y. Mori, N. Ohkama-Ohtsu, A. Maruyama-Nakashita*
    SLIM1 transcription factor promotes sulfate uptake and distribution to shoot, along with phytochelatine accumulation, under cadmium stress in Arabidopsis thaliana.
    Plants 9: 163 (2020)
  16. L. Zhang, R. Kawaguchi, T. Morikawa-Ichinose, A. Allahham, S.-J. Kim, A. Maruyama-Nakashita*
    Sulfur deficiency-induced glucosinolate catabolism attributed to two ß-glucosidases, BGLU28 and BGLU30, is required for plant growth maintenance under sulfur deficiency.
    Plant Cell Physiol. 61:803-813 (2020)
  17. T. Nakajima, Y. Kawano, I. Ohtsu, A. Maruyama-Nakashita, A. Allahham, M. Sato, Y. Sawada, M.Y. Hirai, T. Yokoyama, N. Ohkama-Ohtsu*
    Effects of thiosulfate as a sulfur source on plant growth, metabolites accumulation and gene expression in Arabidopsis and rice.
    Plant Cell Physiol. 60: 1683-1701 (2019)
  18. Y. Kimura, T. Ushiwatari, A. Suyama, R. Tominaga-Wada, T. Wada, A. Maruyama-Nakashita*
    Contribution of root hair development to sulfate uptake in Arabidopsis.
    Plants 8: 106 (2019)
  19. T. Morikawa-Ichinose, S.-J. Kim, A. Allahham, R. Kawaguchi, A. Maruyama-Nakashita*
    Glucosinolate distribution in the aerial parts of sel1-10, a disruption mutant of the sulfate transporter SULTR1;2, in mature Arabidopsis thaliana plants.
    Plants 8: 95 (2019)
  20. Y.-J. Park, J.-H. Chun, H. Woo, A. Maruyama-Nakashita, S.-J. Kim*
    Effects of different sulfur ion concentration in nutrient solution and light source on glucosinolate contents in kale sprouts.
    Korean J. Agric. Sci. 44: 261-271 (2017)
  21. C. Yamaguchi, N. Ohkama-Ohtsu, T. Shinano, A. Maruyama-Nakashita*
    Plants prioritize phytochelatin synthesis during cadmium exposure even under reduced sulfate uptake caused by the disruption of SULTR1;2.
    Plant Signal. Behav. 12: e1325053 (2017)
  22. A. Maruyama-Nakashita*, A. Suyama, H. Takahashi
    5'-non-transcribed flanking region and 5'-untranslated region play distinctive roles in sulfur deficiency induced expression of SULFATE TRANSPORTER 1;2 in Arabidopsis roots.
    Plant Biotech. 34: 51-5 (2017)
  23. C. Yamaguchi, Y. Takimoto, N. Ohkama-Ohtsu, A. Hokura, T. Shinano, T. Nakamura, A. Suyama, A. Maruyama-Nakashita*
    Effects of Cadmium Treatment on the Uptake and Translocation of Sulfate in Arabidopsis thaliana.
    Plant Cell Physiol. 57: 2353-2366 (2016)
  24. F. Aarabi, M. Kusajima, T. Tohge, T. Konishi, T. Gigolashvili, M. Takamune, Y. Sasazaki, M. Watanabe, H. Nakashita, A.R. Fernie, K. Saito, H. Takahashi, H.-M. Hubberten, R. Hoefgen, A. Maruyama-Nakashita*
    Sulfur-deficiency-induced repressor proteins optimize glucosinolate biosynthesis in plants.
    Sci. Advances 2: e1601087 (2016)
  25. A. Maruyama-Nakashita*
    Combinatorial use of sulfur-responsive regions of sulfate transporters provides a highly sensitive plant-based system for detecting selenate and chromate in the environment.
    Soil Sci. Plant Nutr. 62: 386-391 (2016)
  26. N. Yoshimoto, T. Kataoka, A. Maruyama-Nakashita, H. Takahashi*
    Protocol for measurement of sulfate uptake in Arabidopsis seedlings.
    Bio-protocol 6: e1700 (2015)
  27. A. Maruyama-Nakashita*, A. Watanabe-Takahashi, E. Inoue, T. Yamaya, K. Saito, H. Takahashi
    Sulfur-responsive elements in the 3’-non-transcribed intergenic region are essential for the induction of Sulfate Transporter 2;1 gene expression in Arabidopsis roots under sulfur deficiency.
    Plant Cell 27: 1279-1296 (2015)
  28. A. Maruyama-Nakashita*, MY. Hirai, S. Funada, S. Fueki
    Exogenous application of 5-aminolevulinic acid increases transcript levels of sulfur transport and assimilatory genes, sulfate uptake, and cysteine and glutathione contents in Arabidopsis thaliana.
    Soil Sci. Plant Nutr. 56: 281-288 (2010)
  29. C. Kawashima, N. Yoshimoto, A. Maruyama-Nakashita, Y. Tsuchiya, K. Saito, H. Takahashi, T. Dalamy*
    Sulphur starvation induces the expression of microRNA-395 and one of its target genes but in different cell types.
    Plant J. 57: 313-321 (2009)
  30. M. Yasuda, A. Ishikawa, Y. Jikumaru, M. Seki, T. Umezawa, T. Asami, A. Maruyama-Nakashita, T. Kudo, K. Shinozaki, S. Yoshida, H. Nakashita*
    Antagonistic interaction between systemic acquired resistance and the abscisic acid-mediated abiotic stress response in Arabidopsis.
    Plant Cell. 20: 1678-1692 (2008)
  31. A. Maruyama-Nakashita*
    Transcriptional regulation of genes involved in sulfur assimilation in plants: Understanding from the analysis of high-affinity sulfate transporters.
    Plant Biotech. 25: 323-328 (2008)
  32. H. Goda, E. Sasaki, K. Akiyama, A. Maruyama-Nakashita, K. Nakabayashi, W. Li, M. Ogawa, Y. Yamauchi, J. Preston, K. Aoki, T. Kiba, S. Takatsuto, S. Fujioka, T. Asami, T. Nakano, H. Kato, T. Mizuno, H. Sakakibara, S. Yamaguchi, E. Nambara, Y. Kamiya, H. Takahashi, M. Yokota Hirai, T. Sakurai, K. Shinozaki, K. Saito, S. Yoshida, Y. Shimada*
    The AtGenExpress hormone and chemical treatment data set: experimental design, data evaluation, model data analysis and data access.
    Plant J. 55: 526-542 (2008)
  33. A. Maruyama-Nakashita, E. Inoue, K. Saito, H. Takahashi*
    Potential use of sulfur-responsive promoter of sulfate transporter gene for detection and quantification of selenate and chromate in the environment.
    Plant Biotech. 24: 261-263 (2007)
  34. A. Maruyama-Nakashita, Y. Nakamura, T. Tohge, K. Saito, H. Takahashi*
    Arabidopsis SLIM1 is a central transcriptional regulator of plant sulfur response and metabolism.
    Plant Cell 18: 3235-3251 (2006)
  35. A. Maruyama-Nakashita, Y. Nakamura, A. Watanabe-Takahashi, E. Inoue, T. Yamaya, H. Takahashi*
    Identification of a novel cis-acting element conferring sulfur deficiency response in Arabidopsis roots.
    Plant J. 42: 305-314 (2005)
  36. A. Maruyama-Nakashita, Y. Nakamura, T. Yamaya, H. Takahashi*
    Regulation of high-affinity sulfate transporters in plants: towards systematic analysis of sulfur signaling and regulation.
    J. Exp. Bot. 55: 1843-1849 (2004)
  37. A. Maruyama-Nakashita, Y. Nakamura, T. Yamaya, H. Takahashi*
    A novel regulatory pathway of sulfate uptake in Arabidopsis roots: implication of CRE1/WOL/AHK4-mediated cytokinin-dependent regulation.
    Plant J. 38: 779-789 (2004)
  38. A. Maruyama-Nakashita, Y. Nakamura, A. Watanabe-Takahashi, T. Yamaya, H. Takahashi*
    Induction of SULTR1;1 sulfate transporter in Arabidopsis roots involves protein phosphorylation / dephosphorylation circuit for transcriptional regulation.
    Plant Cell Physiol. 45: 340-345 (2004)
  39. A. Maruyama-Nakashita, E. Inoue, A. Watanabe-Takahashi, T. Yamaya, H. Takahashi*
    Transcriptome profiling of sulfur-responsive genes in Arabidopsis reveals global effects of sulfur nutrition on multiple metabolic pathways.
    Plant Physiol. 132: 597-605 (2003)
  40. A. Maruyama, K. Ishizawa, K. Saito*
    ß-Cyanoalanine synthase and cysteine synthase from potato: molecular cloning, biochemical characterization, and spatial and hormonal regulation.
    Plant Mol. Biol. 46: 749-760 (2001)
  41. Y. Hatzfeld, A. Maruyama, A. Schmidt, M. Noji, K. Ishizawa, K. Saito*
    ß-Cyanoalanine synthase is a mitochondrial cysteine synthase-like protein in spinach and Arabidopsis thaliana.
    Plant Physiol. 123: 1163-1172 (2000)
  42. A. Maruyama, K. Ishizawa*, T. Takagi
    Purification and characterization of ß-cyanoalanine synthase and cysteine synthases from potato tubers. ß-Cyanoalanine synthase and mitochondrial cysteine synthase are the same enzyme?
    Plant Cell Physiol. 41: 200-208 (2000)
  43. A. Maruyama, K. Ishizawa, T. Takagi, Y. Esashi*
    Cytosolic ß-cyanoalanine synthase activity attributed to cysteine synthases in cocklebur seeds. Purification and characterization of cytosolic cysteine synthases.
    Plant Cell Physiol. 39: 671-680 (1998)
  44. A. Maruyama, M. Yoshiyama, Y. Adachi, H. Nanba, R. Hasegawa, Y. Esashi*
    Possible participation of ß-cyanoalanine synthase in increasing the amino acid pool of cocklebur seeds in response to ethylene during the pre-germination period.
    Aust. J. Plant. Physiol. (現Functional Plant Biology) 24: 751-757 (1997)
  45. A. Maruyama, M. Yoshiyama, Y. Adachi, A. Tani, R. Hasegawa, Y. Esashi*
    Promotion of cocklebur seed germination by allyl, sulfur and cyanogenic compounds.
    Plant Cell Physiol. 37: 1054-1058 (1996)
  46. Y. Esashi*, A. Maruyama, S. Sasaki, A. Tani, M. Yoshiyama
    Involvement of cyanogens in the promotion of germination of cocklebur seeds in response to various nitrogenous compounds, inhibitors of respiratory and ethylene.
    Plant Cell Physiol. 37: 545-549 (1996)
  47. M. Yoshiyama, A. Maruyama, T. Atsumi, Y. Esashi*
    Mechanism of action of C2H4 in promoting the germination of cocklebur seeds. 3. A further enhancement of priming effect with nitrogenous compounds and C2H4 responsiveness of seeds.
    Aust. J. Plant. Physiol. (現Functional Plant Biology) 23: 519-525 (1996)
  48. R. Hasegawa, A. Maruyama, M. Nakaya, S. Tsuda, Y. Esashi*
    The presence of two types of ß-cyanoalanine synthase in germinating seeds and their responses to ethylene.
    Physiol. Plant. 93: 713-718 (1995b)
  49. R. Hasegawa, A. Maruyama, H. Sasaki, T. Tada, Y. Esashi*
    Possible involvement of ethylene-activated ß-cyanoalanine synthase in the regulation of cocklebur seed germination.
    J. Exp. Bot. 46: 551-556 (1995a)