1. T. Ito, T. Kitaiwa, K. Nishizono, M. Umahashi, S. Miyaji, S. Agake, K. Kuwahara, T. Yokoyama, S. Fushinobu, A. Maruyama-Nakashita, R. Sugiyama, M. Sato, J. Inaba, M.Y. Hirai, N. Ohkama-Ohtsu*
    Glutathione degradation activity of γ-Glutamyl Peptidase 1 manifests its dual roles in primary and secondary sulfur metabolism in Arabidopsis.
    Plant J. (2022) in press
  2. M. Kusajima, M. Fujita, K. Soudthedlath, H. Nakamura, K. Yoneyama, T. Nomura, K. Akiyama, A. Maruyama-Nakashita, T. Asami, H. Nakashita*
    Strigolactones modulates salicylic acid-mediated disease resistance in Arabidopsis thaliana.
    Int. J. Mol. Sci. 23: 5246 (2022)
  3. H. Li, A. Suyama, N. Mitani-Ueno, R. Hell, A. Maruyama-Nakashita*
    Low-level NaCl stimulates plant growth by improving carbon and sulfur assimilation in Arabidopsis thaliana.
    Plants 10: 2134 (2021)
  4. A. Maruyama-Nakashita*, Y. Ishibashi, K. Yamamoto, L. Zhang, T. Morikawa-Ichinose, S.-J. Kim, N. Hayashi
    Oxygen plasma modulates glucosinolate levels without affecting lipid contents and composition in Brassica napus seeds.
    Biosci. Biotech. Biochem. 85: 2434-2441 (2021)
  5. M. Zhang, Y. Tashiro*, Y. Asakura, N. Ishida, K. Watanabe, S. Yue, A. Maruyama-Nakashita, K. Sakai
    Lab-scale autothermal thermophilic aerobic digestion can maintain and remove nitrogen by controlling shear stress and oxygen supply system
    J. Biosci. Bioeng. 132: 293-301 (2021)
  6. A. Allahham, S. Kanno, L. Zhang, A. Maruyama-Nakashita*
    Sulfur deficiency increases phosphate accumulation, uptake, and transport in Arabidopsis thaliana.
    Int. J. Mol. Sci. 21: 2971 (2020)
  7. M. Kusajima, M. Fujita, T. Mori, K. Tsukamoto, T. Ushiwatari, H. Hayashi, A. Maruyama-Nakashita, H. Yamakawa, H. Nakashita*
    Characterization of plant immunity-activating mechanism by a pyrazole derivative.
    Biosci. Biotech. Biochem. 84: 1427-1435 (2020)
  8. T. Morikawa-Ichinose, D. Miura, L. Zhang, S.-J. Kim, A. Maruyama-Nakashita*
    Involvement of BGLU30 in glucosinolate catabolism in the Arabidopsis leaf under dark conditions.
    Plant Cell Physiol. 61:1095-1106 (2020)
  9. C. Yamaguchi, S. Khamsalath, Y. Takimoto, A. Suyama, Y. Mori, N. Ohkama-Ohtsu, A. Maruyama-Nakashita*
    SLIM1 transcription factor promotes sulfate uptake and distribution to shoot, along with phytochelatine accumulation, under cadmium stress in Arabidopsis thaliana.
    Plants 9: 163 (2020)
  10. L. Zhang, R. Kawaguchi, T. Morikawa-Ichinose, A. Allahham, S.-J. Kim, A. Maruyama-Nakashita*
    Sulfur deficiency-induced glucosinolate catabolism attributed to two ß-glucosidases, BGLU28 and BGLU30, is required for plant growth maintenance under sulfur deficiency.
    Plant Cell Physiol. 61:803-813 (2020)
  11. T. Nakajima, Y. Kawano, I. Ohtsu, A. Maruyama-Nakashita, A. Allahham, M. Sato, Y. Sawada, M.Y. Hirai, T. Yokoyama, N. Ohkama-Ohtsu*
    Effects of thiosulfate as a sulfur source on plant growth, metabolites accumulation and gene expression in Arabidopsis and rice.
    Plant Cell Physiol. 60: 1683-1701 (2019)
  12. Y. Kimura, T. Ushiwatari, A. Suyama, R. Tominaga-Wada, T. Wada, A. Maruyama-Nakashita*
    Contribution of root hair development to sulfate uptake in Arabidopsis.
    Plants 8: 106 (2019)
  13. T. Morikawa-Ichinose, S.-J. Kim, A. Allahham, R. Kawaguchi, A. Maruyama-Nakashita*
    Glucosinolate distribution in the aerial parts of sel1-10, a disruption mutant of the sulfate transporter SULTR1;2, in mature Arabidopsis thaliana plants.
    Plants 8: 95 (2019)
  14. Y.-J. Park, J.-H. Chun, H. Woo, A. Maruyama-Nakashita, S.-J. Kim*
    Effects of different sulfur ion concentration in nutrient solution and light source on glucosinolate contents in kale sprouts.
    Korean J. Agric. Sci. 44: 261-271 (2017)
  15. C. Yamaguchi, N. Ohkama-Ohtsu, T. Shinano, A. Maruyama-Nakashita*
    Plants prioritize phytochelatin synthesis during cadmium exposure even under reduced sulfate uptake caused by the disruption of SULTR1;2.
    Plant Signal. Behav. 12: e1325053 (2017)
  16. A. Maruyama-Nakashita*, A. Suyama, H. Takahashi
    5'-non-transcribed flanking region and 5'-untranslated region play distinctive roles in sulfur deficiency induced expression of SULFATE TRANSPORTER 1;2 in Arabidopsis roots.
    Plant Biotech. 34: 51-5 (2017)
  17. C. Yamaguchi, Y. Takimoto, N. Ohkama-Ohtsu, A. Hokura, T. Shinano, T. Nakamura, A. Suyama, A. Maruyama-Nakashita*
    Effects of Cadmium Treatment on the Uptake and Translocation of Sulfate in Arabidopsis thaliana.
    Plant Cell Physiol. 57: 2353-2366 (2016)
  18. F. Aarabi, M. Kusajima, T. Tohge, T. Konishi, T. Gigolashvili, M. Takamune, Y. Sasazaki, M. Watanabe, H. Nakashita, A.R. Fernie, K. Saito, H. Takahashi, H.-M. Hubberten, R. Hoefgen, A. Maruyama-Nakashita*
    Sulfur-deficiency-induced repressor proteins optimize glucosinolate biosynthesis in plants.
    Sci. Advances 2: e1601087 (2016)
  19. A. Maruyama-Nakashita*
    Combinatorial use of sulfur-responsive regions of sulfate transporters provides a highly sensitive plant-based system for detecting selenate and chromate in the environment.
    Soil Sci. Plant Nutr. 62: 386-391 (2016)
  20. N. Yoshimoto, T. Kataoka, A. Maruyama-Nakashita, H. Takahashi*
    Protocol for measurement of sulfate uptake in Arabidopsis seedlings.
    Bio-protocol 6: e1700 (2015)
  21. A. Maruyama-Nakashita*, A. Watanabe-Takahashi, E. Inoue, T. Yamaya, K. Saito, H. Takahashi
    Sulfur-responsive elements in the 3’-non-transcribed intergenic region are essential for the induction of Sulfate Transporter 2;1 gene expression in Arabidopsis roots under sulfur deficiency.
    Plant Cell 27: 1279-1296 (2015)
  22. A. Maruyama-Nakashita*, MY. Hirai, S. Funada, S. Fueki
    Exogenous application of 5-aminolevulinic acid increases transcript levels of sulfur transport and assimilatory genes, sulfate uptake, and cysteine and glutathione contents in Arabidopsis thaliana.
    Soil Sci. Plant Nutr. 56: 281-288 (2010)
  23. C. Kawashima, N. Yoshimoto, A. Maruyama-Nakashita, Y. Tsuchiya, K. Saito, H. Takahashi, T. Dalamy*
    Sulphur starvation induces the expression of microRNA-395 and one of its target genes but in different cell types.
    Plant J. 57: 313-321 (2009)
  24. M. Yasuda, A. Ishikawa, Y. Jikumaru, M. Seki, T. Umezawa, T. Asami, A. Maruyama-Nakashita, T. Kudo, K. Shinozaki, S. Yoshida, H. Nakashita*
    Antagonistic interaction between systemic acquired resistance and the abscisic acid-mediated abiotic stress response in Arabidopsis.
    Plant Cell. 20: 1678-1692 (2008)
  25. A. Maruyama-Nakashita*
    Transcriptional regulation of genes involved in sulfur assimilation in plants: Understanding from the analysis of high-affinity sulfate transporters.
    Plant Biotech. 25: 323-328 (2008)
  26. H. Goda, E. Sasaki, K. Akiyama, A. Maruyama-Nakashita, K. Nakabayashi, W. Li, M. Ogawa, Y. Yamauchi, J. Preston, K. Aoki, T. Kiba, S. Takatsuto, S. Fujioka, T. Asami, T. Nakano, H. Kato, T. Mizuno, H. Sakakibara, S. Yamaguchi, E. Nambara, Y. Kamiya, H. Takahashi, M. Yokota Hirai, T. Sakurai, K. Shinozaki, K. Saito, S. Yoshida, Y. Shimada*
    The AtGenExpress hormone and chemical treatment data set: experimental design, data evaluation, model data analysis and data access.
    Plant J. 55: 526-542 (2008)
  27. A. Maruyama-Nakashita, E. Inoue, K. Saito, H. Takahashi*
    Potential use of sulfur-responsive promoter of sulfate transporter gene for detection and quantification of selenate and chromate in the environment.
    Plant Biotech. 24: 261-263 (2007)
  28. A. Maruyama-Nakashita, Y. Nakamura, T. Tohge, K. Saito, H. Takahashi*
    Arabidopsis SLIM1 is a central transcriptional regulator of plant sulfur response and metabolism.
    Plant Cell 18: 3235-3251 (2006)
  29. A. Maruyama-Nakashita, Y. Nakamura, A. Watanabe-Takahashi, E. Inoue, T. Yamaya, H. Takahashi*
    Identification of a novel cis-acting element conferring sulfur deficiency response in Arabidopsis roots.
    Plant J. 42: 305-314 (2005)
  30. A. Maruyama-Nakashita, Y. Nakamura, T. Yamaya, H. Takahashi*
    Regulation of high-affinity sulfate transporters in plants: towards systematic analysis of sulfur signaling and regulation.
    J. Exp. Bot. 55: 1843-1849 (2004)
  31. A. Maruyama-Nakashita, Y. Nakamura, T. Yamaya, H. Takahashi*
    A novel regulatory pathway of sulfate uptake in Arabidopsis roots: implication of CRE1/WOL/AHK4-mediated cytokinin-dependent regulation.
    Plant J. 38: 779-789 (2004)
  32. A. Maruyama-Nakashita, Y. Nakamura, A. Watanabe-Takahashi, T. Yamaya, H. Takahashi*
    Induction of SULTR1;1 sulfate transporter in Arabidopsis roots involves protein phosphorylation / dephosphorylation circuit for transcriptional regulation.
    Plant Cell Physiol. 45: 340-345 (2004)
  33. A. Maruyama-Nakashita, E. Inoue, A. Watanabe-Takahashi, T. Yamaya, H. Takahashi*
    Transcriptome profiling of sulfur-responsive genes in Arabidopsis reveals global effects of sulfur nutrition on multiple metabolic pathways.
    Plant Physiol. 132: 597-605 (2003)
  34. A. Maruyama, K. Ishizawa, K. Saito*
    ß-Cyanoalanine synthase and cysteine synthase from potato: molecular cloning, biochemical characterization, and spatial and hormonal regulation.
    Plant Mol. Biol. 46: 749-760 (2001)
  35. Y. Hatzfeld, A. Maruyama, A. Schmidt, M. Noji, K. Ishizawa, K. Saito*
    ß-Cyanoalanine synthase is a mitochondrial cysteine synthase-like protein in spinach and Arabidopsis thaliana.
    Plant Physiol. 123: 1163-1172 (2000)
  36. A. Maruyama, K. Ishizawa*, T. Takagi
    Purification and characterization of ß-cyanoalanine synthase and cysteine synthases from potato tubers. ß-Cyanoalanine synthase and mitochondrial cysteine synthase are the same enzyme?
    Plant Cell Physiol. 41: 200-208 (2000)
  37. A. Maruyama, K. Ishizawa, T. Takagi, Y. Esashi*
    Cytosolic ß-cyanoalanine synthase activity attributed to cysteine synthases in cocklebur seeds. Purification and characterization of cytosolic cysteine synthases.
    Plant Cell Physiol. 39: 671-680 (1998)
  38. A. Maruyama, M. Yoshiyama, Y. Adachi, H. Nanba, R. Hasegawa, Y. Esashi*
    Possible participation of ß-cyanoalanine synthase in increasing the amino acid pool of cocklebur seeds in response to ethylene during the pre-germination period.
    Aust. J. Plant. Physiol. (現Functional Plant Biology) 24: 751-757 (1997)
  39. A. Maruyama, M. Yoshiyama, Y. Adachi, A. Tani, R. Hasegawa, Y. Esashi*
    Promotion of cocklebur seed germination by allyl, sulfur and cyanogenic compounds.
    Plant Cell Physiol. 37: 1054-1058 (1996)
  40. Y. Esashi*, A. Maruyama, S. Sasaki, A. Tani, M. Yoshiyama
    Involvement of cyanogens in the promotion of germination of cocklebur seeds in response to various nitrogenous compounds, inhibitors of respiratory and ethylene.
    Plant Cell Physiol. 37: 545-549 (1996)
  41. M. Yoshiyama, A. Maruyama, T. Atsumi, Y. Esashi*
    Mechanism of action of C2H4 in promoting the germination of cocklebur seeds. 3. A further enhancement of priming effect with nitrogenous compounds and C2H4 responsiveness of seeds.
    Aust. J. Plant. Physiol. (現Functional Plant Biology) 23: 519-525 (1996)
  42. R. Hasegawa, A. Maruyama, M. Nakaya, S. Tsuda, Y. Esashi*
    The presence of two types of ß-cyanoalanine synthase in germinating seeds and their responses to ethylene.
    Physiol. Plant. 93: 713-718 (1995b)
  43. R. Hasegawa, A. Maruyama, H. Sasaki, T. Tada, Y. Esashi*
    Possible involvement of ethylene-activated ß-cyanoalanine synthase in the regulation of cocklebur seed germination.
    J. Exp. Bot. 46: 551-556 (1995a)